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Motivation Te-hyperdoped silicon Results(continued)
Silicon (Si) semiconductors have been used in a broad : Tellurium (Te) has been shown as a 1079 o0kt From Fig. 4, we observed significantly smaller carrier
range of fields including photodetection devices and solar : potential dopant for Si semiconductors. It gjg : lifetime for 0.25% and 1.5% sample in both 0.6 and 6mW
cells. Nevertheless, the photoresponsivity of intrinsic Si i has a low diffuse rate in Si substrate [2], %w*{§ : pump power. For 0.6mW, the background noise was high
semiconductor has been limited by its 1.12-electron volt : allowing doping concentrations beyond g :g: : for samples above 1.5% due to thermal excitation.
band gap. One way of expanding the wavelength that i material’s solubility limit (called a0 - _ Normlaes ok (4101 10 Fig. 5 Normalized peak intensity of
intrinsic Si semiconductor can use is through doping. i hyperdoping). Te-hyperdoped Si also shows ‘j‘ : P e ; =1 (-|AT/T0)/(14 AT/TO) to 0.5%
Adding dopants into the semiconductor introduces an :thermal stability up to 400 Celsius [2]. 1018 zsvgzlgnzgﬂ :1; seisn & o Y\ i sample at each pump power
intermediate band between valence band and conduction: Moreover, under decreasing temperature, Fig. 3 Spectra . \ } : ) )
band. This facilitates electron excitation for low energy ~ : Te-hyperdoped Si photodetectors SNOW  petectivity as a function AN g'fgs'tgtgsa?grsér;;t;r‘;:;dl ?S%r;/s'ty
photons. However, such impurities inside the Si gincreasing spectral responsivity [2]. of wavelength under " i Te-hyperdOped o oAdapte.d frOum
semiconduct_or also accelerate ca.rrier recombinatiqn, a irnour experiments, we used Te- zero bias at different j; : : ] Ref [4] .
process, assisted by dopants, which electrons decay into ihyperdoped Si samples with peak temperatures fromfZO i , i — Tesingle oo
VEliEneE BERG. . iconcentrations of 0.25%, 0.5%, 1%, 1.5% per (2] P o O ek R
; 12%, and 2.5%. 3
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Fig. 1 Visualization of
photoexcitation with the
help of intermediate band %' i 3 ‘
(1B) with varying doping = ! influences carrier recombination and carrier lifetime. This : e g T Te1se ]
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concentration (impurity). : summer, the focus is on characterizing a set of samples and | e [W0) T e 3 ;

Adapted from Ref [1] : : > :appropriate pump power for temperature dependent study. | paRelelpee] elliEsh, i .
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Experimental Set—up esults : coincide with each other. This showed there is a nonlinear
i The time-dependent conductivities of the samples were caIcuIated i ivi

relation between pump power and peak conductivity.

We measured carrier lifetime using a non-contact method :using the following relation [3]:  Fig. 4 (-AT/T0)/(1+ AT/TO) i Hence, we performed a pump dependence measurement
called time-resolved terahertz spectroscopy (TRTS). Terahertz: AT 1 measured as a function of time : for 1% and 2% sample. We also fitted the curves with a
waves (THz) are sensitive to free carriers in the material. By : 0 A m for every concentration under 0.6: bi-exponential decay model for quantitative comparison.

sending THz signal through Te-hyperdoped silicon before and :...... > .. 7 -~ . and 6mW pump power. ] (
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after photon excitation, we can find the change in conductlwtyg_ )| 1= (_g) Tiong Tavir
of the material. Optical pump was set to be a 400nm laser all = %
with_pump power of 6mW and we varied pump power using :1" i : o\ . P e - |Fig. 7 showed an increase
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) ol 221N : Fig. 7 Fitting constant al versus pump power for both 1% and 2%.
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