

Why us? Factors Influencing Membership in Color Naming Clusters

Simin Liu, Applied Data Analysis, Wesleyan University

Quantitative Analysis Center Summer 22 Apprenticeship

Introduction

- Color is a universal concept that exists in every language [1] and color naming provides an excellent case for studying linguistic properties across groups (Figure4).
- Clustering the World Color Survey (WCS) data [2] of 104 monolingual, pre-industrial language groups has found universal pattern that exist across these languages [1]. Specifically, 85% of WCS participants fall into 18 clusters.
- Here, we study the top 6 clusters to understand the common

Results

Univariate

- 54.04 % of participants are male (Figure1).
- 74.52 % of participants are from a tropical climate (Figure2).
- 44.5 % of participants have 6-8 unique words (Figure5).

Bivariate

Cluster ID Main Climate GenderF Agriculture1 Hunting1 Gathering1

features within each cluster (Figure3). Interestingly, participants from different languages fall into the same clusters based on their characteristics of color [1].

Research Questions

- What are the characteristics of each cluster?
- Who is in each cluster?
- Which factors contribute most to the formation of each cluster?

Methods

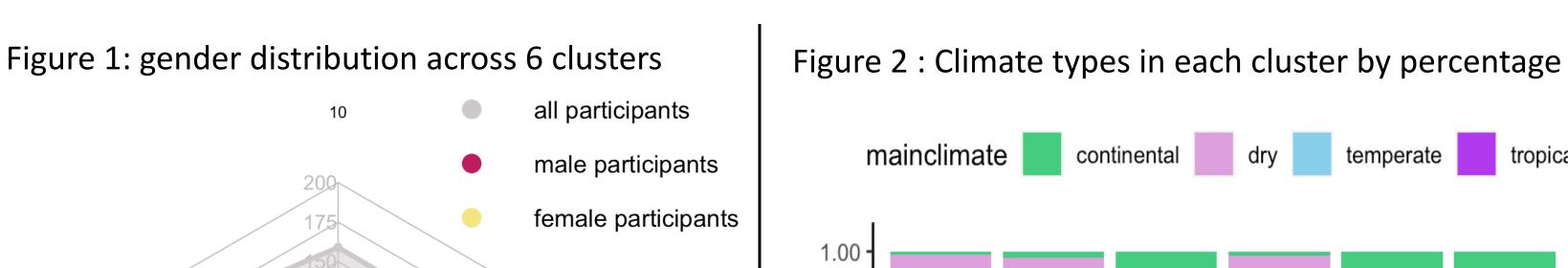
Data

N=991 WCS participants of the 6 clusters with members above n>157.

1. Variable	Age	Gender	Language name	Stage	Family	Basic color terms	Unique words
2. Type	Ν	С	С	С	С	Ν	Ν
3. Source	WCS [2]	WCS	WCS	WCS	WCS	WCS	WCS
1. Variable	Country	Cluster_id	Climate	Latitude	Longitude	Occupation	<i>Temp diff/yr</i>
1. Variable Type	<i>Country</i> C	<i>Cluster_id</i> C	<i>Climate</i> C	<i>Latitude</i> N	<i>Longitude</i> N	<i>Occupation</i>	<i>Temp diff/yr</i> N

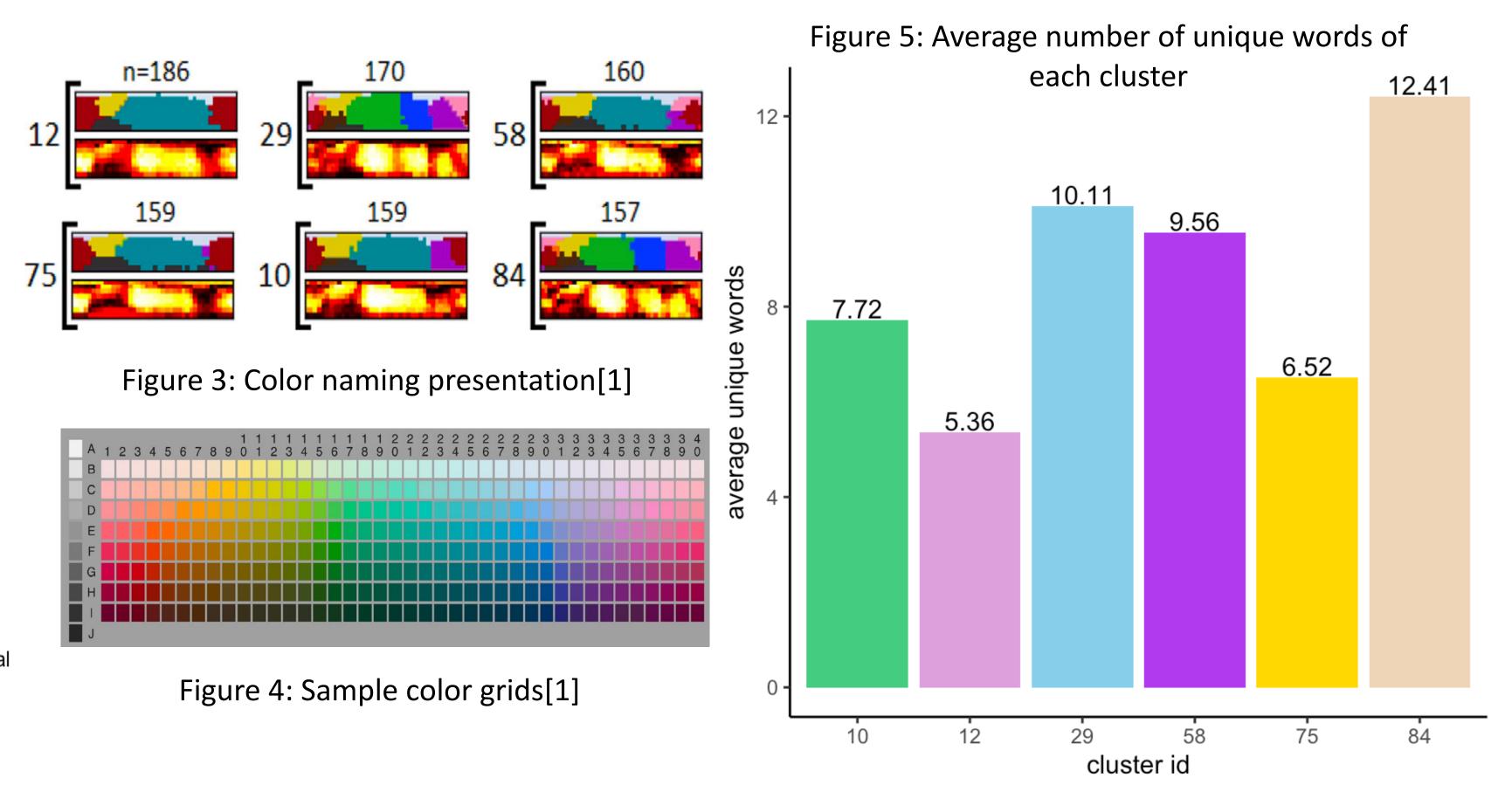
			U	0	Ŭ
10(n=159)	R(dry:-18.85)	R(-1.92)	R(4.73)	R(-3.61)	R(-7.03)
12(n=186)	(tropical: -21.63)*	(10.48)	(-15.31)*	(-22.17)	(21.22)*
29(n=170)	(dry:-16.33)*	(-18.87)	(-13.95)*	(14.05)	(19.11)*
58(n=160)	(tropical: -17.51)*	(10.07)	(16.4)	(10.81)	(-16.84)
75(n=159)	(tropical: -14.24)*	(8.07)	(19.73)	(-19.61)	(-24.03)*
84(n=157)	(temperate:	(-7.84)	(-11.6)*	(20.54)*	(7.58)*
	-21.27)*			· · · ·	
Cluster ID		Latitude	Longitude	Temp Diff	
	-21.27)*	. ,			
Cluster ID	-21.27)* Mercantilism1	Latitude	Longitude	Temp Diff	
Cluster ID 10	-21.27)* Mercantilism1 R(-0.19)	Latitude R	Longitude R	Temp Diff R	
Cluster ID 10 12	-21.27)* Mercantilism1 R(-0.19) (0.93)	Latitude R [-0.014]*	Longitude R [0.0004]	Temp Diff R [-0.020]*	
Cluster ID 10 12 29	-21.27)* Mercantilism1 R(-0.19) (0.93) (0.85)	Latitude R [-0.014]* [0.025]*	Longitude R [0.0004] [-0.0002]	Temp Diff R [-0.020]* [0.049]*	
Cluster ID 10 12 29 58	-21.27)* Mercantilism1 R(-0.19) (0.93) (0.85) (-3.19)	Latitude R [-0.014]* [0.025]* [-0.009]	Longitude R [0.0004] [-0.0002] [0.0042]*	Temp Diff R [-0.020]* [0.049]* [-0.002]	

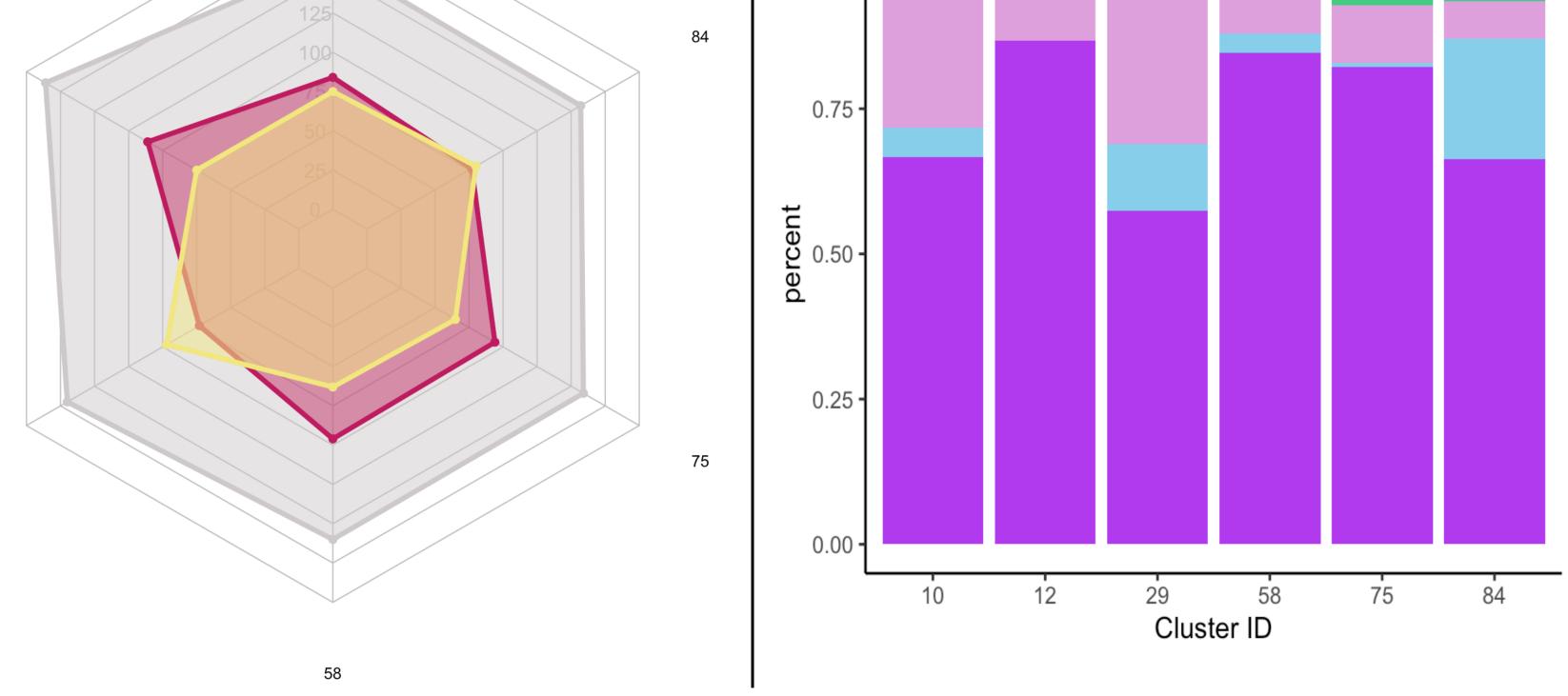
Table 2: *=significant for multinomial regressions; R=reference level; ()=results from contingency difference tables(expected-actual value) ; []=coefficients from multinomial regressions;


Table 1: (N=Numeric, C=Categorical, D=Dummy)

The data is drawn from the WCS archive [2], a past study on WCS participants [1], and personal research into each language group [3].

Measures


12


- *Cluster membership* is the dependent variable and therefore most of the analyses use chi-square tests and multinomial regression to explore possible relationships between demographic features.
- Additionally, we use the chi-square contingency tables to explore variables that have the largest difference between expected values and actual values.

Multivariate

• The model of *cluster_id* as a function of their occupation indicates that having hunting and gathering as occupations plays a significant role in determining unique words (p < 0.05).

Discussions

- Many predictor variables are correlated to each other (e.g. unique words per person and basic color terms for a language). Therefore, this study only focuses on how some independent demographic features influence color naming. Further study is needed to better understand the mechanism behind color naming systems.
- Gender seems to be significant for cluster 29, but the regression result rejects the guess. Further study is necessary.
- Studying the relationships between some demographic features and color naming may help build new hypotheses that will lead to future empirical studies and understand social phenomena[1].

[1]: Joe, K., & Gooyabadi, M. (2021). A bayesian nonparametric mixture model for studying universal patterns in color naming. *Applied Mathematics and Computation, 395*, 125868. https://doi.org/10.1016/j.amc.2020.125868
[2]: Cook, R., Kay, P., & Regier, T. (2003, June 1). WCS Data Archives. Retrieved July 17, 2022, from http://www.icsi.berkeley.edu/wcs/data.html
[3]: Hammarström, Harald & Forkel, Robert & Haspelmath, Martin & Bank, Sebastian. 2022. Glottolog 4.6. Leipzig: Max Planck Institute for Evolutionary Anthropology. https://doi.org/10.5281/zenodo.6578297 (Available online at http://glottolog.org, Accessed on 2022-07-22.)