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We design a wavefront shaping protocol 
which maximizes the electromagnetic 
forces acting at a specific location in an 
arbitrary complex scattering medium. Our 
approach utilizes appropriate physical 
operators, that rely on the measured 
scattering matrix, whose eigenvectors can 
be used for the design of wavefronts in the 
far field with optimal properties (e.g. 
extreme force, pressure, etc.) in the near 
field of a target. A statistical description of 
these optimal waveforms is performed 
using a universal coupled mode theory 
formalism whose results are tested against 
an actual complex system consisting of a 
complex network of microwave graphs 
with an embedded localized target. 
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Wave Equation:
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Boundary Conditions at Vertices:
1. Continuity of Potential Difference
2. Current Conservation
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Green′s function: ෠𝐺 = 𝜔 − ෡𝐻𝑒𝑓𝑓
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Scattering Matrix: መ𝑆 = −෠1𝑀 + 𝑖 ෡𝐷 ෠𝐺 ෡𝐷𝑇
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As 𝜌 → 1, 𝑃𝜌(𝐼)  becomes the Porter-Thomas Distribution
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|𝜌| ≈ 1 corresponding to maximal eigenstate of ෠𝑄𝜀𝑛

Abstract

        Operator Definition:

෠𝑄𝑥 = −𝑖 መ𝑆†
𝑑 መ𝑆

𝑑𝑥

෠𝑄𝑥 = 𝓕  where 𝓕 = −
𝑑

𝑑𝑥
෡𝐻𝑒𝑓𝑓

Model 
Framework CMT Graphs

GWS for Unitary 
Systems

෠𝑄𝑥 = −෡𝐷 ෠𝐺†
𝑑

𝑑𝑥
෡𝐻𝑒𝑓𝑓

෠𝐺 ෡𝐷𝑇
෠𝑄𝑥

= 2𝑘 ෡𝑊 ෠𝑅†
𝑑

𝑑𝑥
෠𝑅−1 ෠𝑅 ෡𝑊𝑇

Expectation 
Value 

(Generalized 
Force)

⟨𝑠+| ෠𝑄𝑥 𝑠+

= − 𝜓
𝑑

𝑑𝑥
෡𝐻𝑒𝑓𝑓 𝜓

⟨𝐼| ෠𝑄𝑥 𝐼

= 2𝑘 𝜓
𝑑

𝑑𝑥
෠𝑅−1 𝜓

GWS for target 
perturbation
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Scattering Matrix:

መ𝑆 = −෠1𝑀 + 2𝑖 ෡𝑊 ෠𝑅 ෡𝑊𝑇

Site intensities resulting from random input wave are given by,

𝑃𝜌 𝐼 =
1

1 − 𝜌 2
exp −

𝐼

1 − 𝜌 2
I0

𝜌 𝐼

1 − 𝜌 2

With 𝜌 =
𝜓⋅𝜓

𝜓 2 ,     𝜌 2 is the phase rigidity

Input

Output

Input

Output

𝜇
𝛽

𝜓𝜇𝛽

Maximal Eigenvalue of ෠𝑄𝜀𝑛
:

𝜏𝜀𝑛
= −2𝛾𝑒 ෍

𝑟=1

𝑀
෠𝐺

𝑛,𝑟

2

          with assoc. eigenstate 𝑙 𝑠+ = ෠𝐺
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