
Figure 1. Real-life CAM72 image of
helical ribbon

Virtual Physics: Modelling Anisotropic Particles in Fluids using
Unity Game Engine Cristina D. Gonzalez, Greg Voth Department of Physics, Wesleyan University

One of the most challenging steps in the 3D reconstruction of complex
particle motion in turbulent flows is measuring particle orientation
from multiple images. Standard methods, which numerically project
the object onto multiple cameras, fall short when tracking the more
complex movements of particles affected by specific lighting
conventions.

However, Unity, a popular video game engine, is highly optimized to
project 3D objects onto images, allowing us to simulate the translation
and rotation of helical ribbon particles through 500 centistokes fluid
(silicon oil).

To best simulate the particle's
movement, we first set up virtual
versions of the objects involved
in the experiment, including the
helical ribbon particle, in which
light is rendered using Unity’s
High Definition Render Pipeline
and movement is simulated using
Unity’s RigidBody engine.

Introduction

Original Set Up
Firstly, we implemented 3D models of each object and camera involved,
including their exact scale and position. Unlike conventional physics
and mathematics, Unity uses a left-handed coordinate system and the
Euler “ZXY” convention, where the positive rotation moves clockwise
from the axis of rotation.

Figure 1I. Experimental Scene Set Up

Camera Calibration
To properly recreate the real-life camera images, we had to calibrate
the camera's extrinsic parameters (converting the coordinate system
onto the camera coordinate system) and its intrinsic parameters
(converting camera coordinates onto pixel projections).
Unity does not have a built-in internal camera calibration system, so
we computed the calibration outside of Unity and implemented it for
the virtual cameras using parameters in the Unity physical camera
component.

Figure III. Unity Camera Pinhole
model

Therefore, we used Python’s OpenCV library and its camera
calibration systems to compute the focal length (fx , fy) and other
necessary parameters used in camera calibration:

Intrinsic parameters: The field of view in Unity’s cameras, or what
the camera sees at a point in time (which follows the pinhole model)
is inversely proportional to the focus length.

Figures IV, V. Original image of the checkerboard calibration rig on the tub. The holder was
edited out of the picture, and the image's exposure was increased. Later, the calibration rig

would be drawn and computed onto the edited image.

Extrinsic Parameters: For more accuracy, we used lab-calculated
values (including position and camera rotation matrices) to finalize
the setup of the cameras.

Unity lights its virtual world through a system of pre-computed
‘global illumination’ and ‘real-time’ lights, which simulate the
complex behavior of light as it bounces and interacts with the world.
Unity’s High Definition Render Pipeline gave us greater control to
apply complex lighting conditions to the virtual world.
When considering the visual aspects of the particle simulation, there
are two main concerns: how light scatters off objects and what light
sources there are.

To control the light scattering on the particle, we modified the
“material” of the helix to match its real-life counterpart best,
including setting up its metallic value and smoothness.

First, we set up large lights which simulated the big LED panels
present while filming the real-life particles dropping, as well as
complementary spotlights.

Figure X. Error computing shadows!

However, even if Unity’s lighting system is quite powerful, it is not
equipped with the actual material of the real-life particle
(translucency), as it cannot compute varying degrees of internal light
scattering.

This issue affects the particle visuals
and how the light bounces from it
within the scene. Unity also has
trouble recreating the shadows of
complex particles, oversimplifying the
shadow the object makes within the
panels in the background.

Movement
Finally, we simulated the position and rotation of
the particle by using Unity’s built-in 3D physics
engine by measuring the particle's starting and
ending position. The particle was translated using
Unity’s Transform.position() function.

For the rotation of the particle, we used the
Quaternion.Slerp() function, which spherically
interpolates between the two angles. Both
functions ran concurrently and are updated every
frame to create the final result.

By exploring Unity’s Physics engine and optic systems, we could better understand the inner mechanisms of game engines and how they relate
to real-life physics, as well as the strengths and limitations of Unity as a tool for the simulation of fluid dynamics, turbulence, and other scientific
models.
Unity provides an excellent system for modeling real-life objects and offers a robust lighting system that can compute extensive computations
faster. However, Unity is not always precise with its calculations and may not fully represent the exact physics to simplify its implementation
process. In the future, it would be beneficial to use Unity’s built-in features as a stepping-stone and build a custom version of their Physics
engine to account for more complex movement and object shapes.

Conclusion

Acknowledgements
I would like to thank Professor Voth for his guidance and mentorship in this program as well as the QAC Summer Apprenticeship and the RIS
for making this opportunity possible through funding and support.

[1] Condino, Sara, et al. “Hybrid Spine Simulator Prototype for X-Ray Free Pedicle Screws Fixation Training.” Applied Sciences, vol. 11, no. 3, 2021, p. 1038, https://doi.org/10.3390/app11031038.

Figures VI,VII, VIII. Three camera images of rotated particle

Scan me to
watch the
particle
move!

Figure XV. Unity Smoothness Manual

Lighting

This system caused
challenges throughout
the development of this
project, which we
tackled using MATLAB
scripts translating from
real-life information to
the Unity system.

We ran images of a checkerboard
from each camera on a script
using the OpenCV library, which
gave us each camera’s focal
length and image distortion based
on the angles between the
checkerboard corners.

