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One of the most challenging steps in the 3D reconstruction of complex 
particle motion in turbulent flows is measuring particle orientation 
from multiple images. Standard methods, which numerically project 
the object onto multiple cameras, fall short when tracking the more 
complex movements of particles affected by specific lighting 
conventions.

However, Unity, a popular video game engine, is highly optimized to 
project 3D objects onto images, allowing us to simulate the translation 
and rotation of helical ribbon particles through 500 centistokes fluid 
(silicon oil).

To best simulate the particle's 
movement, we first set up virtual 
versions of the objects involved 
in the experiment, including the 
helical ribbon particle, in which 
light is rendered using Unity’s
High Definition Render Pipeline 
and movement is simulated using 
Unity’s RigidBody engine.

Introduction

Original Set Up 
Firstly, we implemented 3D models of each object and camera involved, 
including their exact scale and position. Unlike conventional physics 
and mathematics, Unity uses a left-handed coordinate system and the 
Euler “ZXY” convention, where the positive rotation moves clockwise 
from the axis of rotation. 

Figure 1I. Experimental Scene Set Up

Camera Calibration
To properly recreate the real-life camera images, we had to calibrate 
the camera's extrinsic parameters (converting the coordinate system 
onto the camera coordinate system) and its intrinsic parameters 
(converting camera coordinates onto pixel projections).
Unity does not have a built-in internal camera calibration system, so 
we computed the calibration outside of Unity and implemented it for 
the virtual cameras using parameters in the Unity physical camera 
component.

Figure III. Unity Camera Pinhole 
model

Therefore, we used Python’s OpenCV library and its camera 
calibration systems to compute the focal length (fx , fy) and other 
necessary parameters used in camera calibration:

Intrinsic parameters: The field of view in Unity’s cameras, or what
the camera sees at a point in time (which follows the pinhole model)
is inversely proportional to the focus length.

Figures IV, V. Original image of the checkerboard calibration rig on the tub. The holder was 
edited out of the picture, and the image's exposure was increased. Later, the calibration rig 

would be drawn and computed onto the edited image.

Extrinsic Parameters: For more accuracy, we used lab-calculated
values (including position and camera rotation matrices) to finalize
the setup of the cameras.

Unity lights its virtual world through a system of pre-computed
‘global illumination’ and ‘real-time’ lights, which simulate the
complex behavior of light as it bounces and interacts with the world.
Unity’s High Definition Render Pipeline gave us greater control to
apply complex lighting conditions to the virtual world.
When considering the visual aspects of the particle simulation, there
are two main concerns: how light scatters off objects and what light
sources there are.

To control the light scattering on the particle, we modified the 
“material” of the helix to match its real-life counterpart best, 
including setting up its metallic value and smoothness.

First, we set up large lights which simulated the big LED panels
present while filming the real-life particles dropping, as well as
complementary spotlights.

Figure X. Error computing shadows!

However, even if Unity’s lighting system is quite powerful, it is not 
equipped with the actual material of the real-life particle 
(translucency), as it cannot compute varying degrees of internal light 
scattering. 

This issue affects the particle visuals 
and how the light bounces from it 
within the scene. Unity also has 
trouble recreating the shadows of 
complex particles, oversimplifying the 
shadow the object makes within the 
panels in the background.

Movement
Finally, we simulated the position and rotation of
the particle by using Unity’s built-in 3D physics
engine by measuring the particle's starting and
ending position. The particle was translated using
Unity’s Transform.position() function.

For the rotation of the particle, we used the 
Quaternion.Slerp() function, which spherically 
interpolates between the two angles. Both 
functions ran concurrently and are updated every 
frame to create the final result.

By exploring Unity’s Physics engine and optic systems, we could better understand the inner mechanisms of game engines and how they relate
to real-life physics, as well as the strengths and limitations of Unity as a tool for the simulation of fluid dynamics, turbulence, and other scientific
models.
Unity provides an excellent system for modeling real-life objects and offers a robust lighting system that can compute extensive computations 
faster. However, Unity is not always precise with its calculations and may not fully represent the exact physics to simplify its implementation 
process. In the future, it would be beneficial to use Unity’s built-in features as a stepping-stone and build a custom version of their Physics 
engine to account for more complex movement and object shapes.

Conclusion
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Figures VI,VII, VIII.  Three camera images of rotated particle

Scan me to 
watch the 
particle 
move!

Figure XV. Unity Smoothness Manual

Lighting

This system caused 
challenges throughout 
the development of this 
project, which we 
tackled using MATLAB 
scripts translating from 
real-life information to 
the Unity system.

We ran images of a checkerboard 
from each camera on a script 
using the OpenCV library, which 
gave us each camera’s focal 
length and image distortion based 
on the angles between the 
checkerboard corners.


