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Introduction Methods: Regression Results: Structural Topic Models
* Automatic speech recognition (ASR) converts audio into text * Transcription error measured using Word Error Rate (WER) * Despite these correlations, the effect of transcription errors on
(e.g. automatic YouTube captions)  Notable data processing: converted numbers to words, topic models and their interpretation was minor
* Has gained popularity among political scientists to manually correcting special cases *  Topic ideas were very similar between STMs created
analyze large audio datasets »  Fractions and dates (3/4), and dollars/cents ($56.85) based on Google and manual transcriptions
* Proksch et al. have validated its general reliability in this - To test for transcription error correlations, we fit a beta
context [1] regression model with random intercepts for candidates Vote (vote, elect, congress,day)  Vote (vote, elect, get, novemb)
Donate (can, dollar, help, district) Donate (can, dollar, help, district)

*  Methods are improving, but transcription quality Candidate-level Data Crime (new, polic, crime) Crime (new, joe, polic, peopl)

impeded by background music, uncommon Y ey & o Figure & 011 5TH/< 1 Kamerica emercn, e chang)  Benerca (smerican e, wor)
* Incumbency  Competitiveness*

words/pronunciations, accents, poor quality audio, etc. topics about crime,

* Race * log(Total Spend) borti ti d ti __
i .. . . abortion, voting, donations, : : : : :
* Correlation of tra nscription errors with candidate /ad-level Word Errorx _ orati 4 A . Drug Prices/Immigration Immigration (border, secur, work,
. - : : Rate (WER) Ad-level Data Immigration, and AMerica,  (drug, border, secur, colorado, lower) drug)
info could threaten statistical inference made with ASR ﬁ among others. The biggest Small Business (uh, know, go, just,busiy SImall Business (n, xmow, people, just, busi)
. * log(»open : - . : . .
o I\/Iany researchers [2’3] use ASR results as prOXIES for . CandidateSpeaking** difference was that the Working (work, fight, care, make) Working (work, tax, district)
manual transcrip ts to make analysis feasible . NonCandidateSpeaking** manual .ST|V| ha.d two A.bortu.)n (abort, right, ban, woman) Abortfon 1 (abort, right, ban)
abortion topics. Generic (us, one, go congressman) Abortion 2 (take, right, even)
*  These errors could also have implications for downstream Generic (run, district, vote) Generic (repress, district, work)

Generic (messag, approv, fight) Generic (approv, messag, fight)

text applications of ASR

. . Results: Regression
*  Examples: structural topic modelling (STM), named

entity recognition (NER)

* Ad spend, candidate party, and presences of non-candidate
and candidate voices seem to correlate with WER

* Other ad and candidate data do not correlate with WER

 While a few predictors for issue-related topics changed, many
stayed the same (reflecting randomness of STMs)
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removed near-duplicates (with text similarity > .98) , , g i D= others, such as party as a predictor of police & abortion topic proportions.
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*  Coders hand transcribed each of these ads and noted type of .
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* Candidate and non-candidate voices in ads are more difficult

* Candidate-level data from WMP and OpenSecrets (race, to study, but do seem to effect WER

party, gender, incumbency, total spend, etc.) Methods: Structural TOPIC Models - Regardless of these correlations, topic models and their
*  Cook Political Report race competitiveness scores [4] *  Fit structural topic models for manual and ASR transcripts, interpretations are very resilient to ASR transcription errors
- Ad-level spend data from Facebook stemmed and with rare words removed * Next Steps
. : . * Account for randomness in STMs with repetition
- After removing third party and Indigenous candidates (small * Used all above variables as prevalence predictors, trying both T PETIHE
. . . v . . *  More downstream applications: is Named Entity
sample size), ads with non-English words, and ads missing with and without WER .
Jat Had 439 ad . o . Recognition (NER) robust to ASR errors?
ata, we na ads * K =14 topics chosen by held-out likelihood & residuals - More study of types of voices found within ads
*  Manually labelled topics based on highest likelihood words * Can we predict within-candidate WER variance?
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*Based on Cook Political Report competitiveness scores, without regard to party. 1 = “solid”/non-competitive,
2="likely”/slightly competitive,3="lean”/fairly competitive, 4=“toss-up”/very competitive.
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