
Wave Transport in Complex Systems Lab, Wesleyan University
R. Acharya, Alba Ramos, L. Fernandez-Alcazar, T. Kottos

Utilizing Koopman Theory and Extended DMD
to find Linear Representations of Nonlinear Systems
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Abstract
Solving Nonlinear Systems is a central challenge in almost every physics 

discipline. These systems typically generate complex dynamics and they do 
not have a closed-form solution. Utilizing the Koopman Operator 

Framework, we instead identify certain nonlinear transformations that allow 
to develop an equivalent linear coordinate system where the dynamics can 

be analyzed using standard methods applicable to linear systems. In 
exchange for the linearity of the Koopman Operator approach, the 

dimensionality of the original low-dimensional nonlinear system often 
becomes infinite in the Koopman linear coordinates. Finding these 

coordinate transformations is a core challenge of the theory, and the task is 
seldom easy. To resolve this problem, we rely on data-driven techniques 
such as Extended Dynamic Mode Decomposition (eDMD) which takes in 
time-series data and constructs a linear approximation of the nonlinear 

system. The power of this methodology is that it is completely agnostic to 
the equations of motion, and takes in purely data which is extremely useful 

when these equations are highly complex or unknown.

Koopman and eDMD Theory

Standard form of arbitrary 
dynamics system

Properties:

Coordinate Transformation
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By definition the Koopman Operator advances a 
measurement function one time step

Eigenfunctions evolve linearly

The Koopman Operator inherits linearity from the 
linearity of the measurement space regardless of 

whether the dynamics are linear

Dynamics Mode Decomposition (DMD):

Spectral 
Expansion

Construct Data 
Matrices

Regression

Time-Series Data Matrices
Singular Value 
Decomposition

Approximate Linear Evolution 
Operator

Low Rank Approximation:

Eigendecomposition

Extended DMD (eDMD):

Equations of Motion:

Dictionary of Observables:

Polynomials of the state variables 
upto degree 6, so a total of 210 

observables.

resonant frequency of 1st resonator (1)

resonant frequency of 2nd resonator (1)

coupling between resonators (0.22)

linear gain of 1st resonator (0.21)

linear loss of 2nd resonator (0.2)

nonlinearity strength (0.01)

Decompose the Real and 
Imaginary Parts of the Fields:

Results:

Phase Space:

Instead of considering state 
measurement of a system, we 

instead consider scalar 
measurement function and then 
do DMD the same way to get a 

spectral expansion in terms of out 
measurement functions

The eigenfunction with eigenvalue closest to 1, maps out the “basins of attraction” on the system, i.e 
characterized the long term behaviour. Even in a model with 1000 observables (which is small compared to 
infinity), we can extract information about the topology of the phase space from our finite truncation of the 

Koopman Operator. The left plot shows this eigenfunction. The middle plot shows the true basins of attraction 
from the dynamics. The right plot shows how the value of the eigenfunction can predict these true basins.

Future of the System 
is determined by the 

spectral 
decomposition of L

The eDMD model is trained on 500 seconds of the dimer dynamics, and then 
predicts the future of the system up until 1000 seconds. The red curve indicates 

the eDMD trajectory, and the black curve is the true dynamics.

Plot of the 2nd eigenfunction which 
exhibits a linear evolution through time

Plot of Koopman Matrix eigenvalues

Time Evolution of Low Rank 
Dynamics and 

Transformation between low 
and high rank dynamics

Schematic for DMD Algorithm. First, collect time-series data 
into two large matrices. Second, perform a regression analysis 

based purely on singular value decomposition and matrix 
multiplication. Third, test your linear model against the true 

dynamics.

Linearized Dynamics

Koopman Theory:
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