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Cell RAFTs: Applying RAFT to Cell Microscopy

The wound healing assay experiment is used to study cell motility. 
Practically , it involves mimicking a wound by separating cells and 
taking high resolution videos in the hours or days after separation. 
To study cell movement, biologists dye the cells and use computer 
algorithms to track their movement. However, certain dyes prove 
difficult for traditional algorithms to track.

This study investigates an alternate method, Recurrent All-Pairs 
Field Transforms (RAFT), which uses deep learning to extract 
trajectories for the cells.1 We ask if we can use nuclei-dyed cells and 
their trajectories obtained through traditional methods (the 
Farneback algorithm2) as the training data. Given the large sizes of 
these videos (~8GB-32GB), computers may not be able to load the 
entire video into memory at once. As such, we compare different 
preprocessing approaches against each other as well.

Liam Jones provides the nuclei-dyed training data and Srijana Niraula provides the cytoplasm-dyed data that we will use to check 
our model. Both videos are split into three channels: one phase contrast and two fluorescent. Using the fact that the phase 
contrast channels “look” the same between videos, we can train our model to extract optical flow information directly from it.

To begin, we scale each image’s x and y direction by 1/4, 1/6 and 1/8 (saving them as separate videos). Then, we preprocess the 
nuclei-dyed and cytoplasm-dyed videos by increasing contrast and applying blurs. We can use the Farneback method on the 
nuclei-dyed videos, producing optical flow data for the fluorescent channels. Now, we add the channels together, mimicking the 
phase contrast channel. Finally, we split the videos into frame pairs associated with their flow. This provides the training and 
validation data. To accomplish this, we made use of Python and the Open-CV  and Numpy libraries.

Traditional models like Farneback essentially take look at every pixel’s intensity to determine 
movement.2 In contrast, RAFT generates a feature map (which highlights edges and shapes) and 
draws correlations between shapes to determine movement.1

Machines have difficulty constructing shapes out of cells since they are constantly changing 
shape. This is likely why RAFT has not been widely used for cell microscopy. However, the Python 
library PyTorch provides a RAFT model trained on videos of hot-air balloons that performed 
decently on our data, prompting us to investigate this model further.

The cell microscopy videos used for training are extremely large (~8GB-32GB). Our lab’s standard is 
to scale them down by a factor of 1/4 (by the x and y directions), but this means we can only load a 
single frame into RAM at once (since forwards and backwards propagation also use RAM). As such, 
we investigate the impact of further scaling on the images – examining the tradeoff between larger 
batch sizes and resolution. Thus, we train six models (in addition to using the pre-trained model).

We chose not to go further than the 1/8 scale factor since that would lose too much information. 
Further, six frames appeared to be the upper limit for how many frames we could load into RAM 
even at the smallest resolution.

Scale Factor Batch Sizes
1/4 1 frame
1/6 1 frame, 4 frames

1/8 1 frame, 4, frames, 6 frames
Fig. 3 RAFT Output.1 (a) Processed image provided to RAFT for prediction. (b) RAFT’s optical flow output. 

Visible in this is the feature map it creates, removing noise and only keeping core shapes.

First, the Mitchel Lab computer does not have a GPU, so code was 
optimized for CPU in case future training was required. This restricted 
the number of epochs and samples we could use. However, GPUs 
have less VRAM, which can further restrict the size of the training 
data, so work needs to be done in creating smaller training data if the 
lab begins using a GPU. Second, the available training data largely 
used the same types of cells (MCF10A vs MCF10A-Rab5a) which may 
have biased the model towards their specific movements. Future 
work should use more varied training data. Third, there was no ground 
truth for the cytoplasm-dyed videos, which could have increased the 
accuracy of our checks when comparing the models. Hand-tagging 
flow can provide accurate ground truth.

We’ll label each model by their scale factor and their batch size. For example, 1/4 = 0.25, so the 1/4 scale factor with a batch size of 
one is model 25b1. We find that model 167b1 (1/8 scale factor) has the lowest loss. Via the Kruskal-Wallis test, we find that the 
difference in loss is statistically significant. We also found that while batch size and scale-factor were significant towards lower loss 
values, their  interaction was not.

We also found that lower resolutions performed better during the checks (using the cytoplasm dyed-data). Due to the lack of 
ground truth, we used photometric warp and backwards flow to determine accuracy. We suspect that the lower resolutions 
obfuscate the cell edges, allowing the model to create a feature map of sliding groups of cells, which functionally create edges.
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Fig. 2 Phase Contrast and Fluorescent Channels. (a) Nuclei-dyed fluorescent channel. (b) Cytoplasm-dyed fluorescent 

channel. (c) Cytoplasm-dyed phase contrast channel. See Fig. 1 for nuclei-dyed phase contrast channel.
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Fig. 1 Phase Contrast Channel of Nuclei-Dyed Cells

Fig. 4 Table of Training Data Scale Factors and Batch Sizes
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Fig. 5 Best Training and Checking Loss. (a) Scatterplot of best training loss per model. (b) Boxplot of checking loss distributions by model.

Fig. 6 Suspected Reasoning for Lower Resolution Models Performing Better. The similar intensity of both points would lead the 

Farneback algorithm to deduce these points are moving in the same direction, but RAFT’s correlation approach differentiates them.  

b.a.

a. b.


	Slide 1

