Exploring gene regulatory interactions between histones H1 and H2A.Z in budding yeast

Simon Moss, Anna Rogers and Scott Holmes Department of Molecular Biology and Biochemistry, Wesleyan University

Wesleyan University

Contact: Scott Holmes - sholmes@wesleyan.edu

Introduction

- Nucleosomes are critical to the organization of DNA into chromosomes. DNA wraps around nucleosome, allowing the nucleosome to regulating gene expression.
- Nucleosomes contain eight core histone proteins: two of each H2A, H2B, H3, and H4. There is a fifth histone, H1, that sits at the DNA entry/exit site on the nucleosome.

Research Questions

- How does loss of H1 affect gene expression across the *S. cerevisiae* genome?
- Do H1 and H2A.Z interact in a generegulatory context?

Background

- We have demonstrated that phenotypes caused by the lack of H2A.Z are returned to a wild type phenotype in the absence of H1 in various contexts:
 - Condensation defects caused by lack of H2A.Z(1)
 - SIR-dependent silencing at the HMR (2)
- Thus, we hypothesize that we might see a similar phenotype from gene expression data, especially from two proteins involved in chromatin dynamics.

Sources

- Rogers AM, Neri NR, Chigweshe L, Holmes SG. Histone variant H2A.Z and linker histone H1 influence chromosome condensation in Saccharomyces cerevisiae. GENETICS. 2024;226(4). doi:https://doi.org/10.1093/genetics/iyae022
- 2. Chen PY. Genetic Analysis of Linker Histone H1 in Saccharomyces cerevisiae. Wesleyan University Digital Collections (Wesleyan University). Published online January 1, 2008. doi:https://doi.org/10.14418/wes01.1.276

Expression Profile of hhoιΔ

Differentially expressed genes: Wild type vs $hho1\Delta$

Telomere position effect: Wild type vs $hho1\Delta$

Gene Ontology: Overrepresentation and Enrichment of Biological Process

473 DEGs

21 DEGs

Wild type

hho1∆

 $htz1\Delta$

 $htz1\Delta hho1\Delta$

hho1∆

Changes to Gene Expression

1353

htz1∆

htz1∆

hho1∆

237

236

 $hhoi\Delta$ and $htzi\Delta$

Conclusions and Future Steps

- H1 regulates gene expression across the S. cerevisiae genome.
- H1 non-randomly affects genes involved in various biological pathways including ribosome biogenesis and chromatin looping, and by proximity to the telomeres.
- Lack of H2A.Z covers up the gene-regulatory influence of the loss of H1.

Next Steps:

- Build an interaction model to better represent overlapping conditions.
- Analyze co-expression to explore the regulatory network involving H1 and H2A.Z.

Acknowledgements

Thank you to the Baker '64 Collabria Fellowship, Professor Holmes and my lab mates in the Holmes Lab, whom I am proud to call my friends.